
5.1 Introduction
Since everything is considered a file in Linux, file management is an important topic. Not only are
your documents considered files, but hardware devices such as hard drives and memory as well.
Even directories are considered files, since they are special files that are used to contain other files.

The essential commands needed for file management are often named by short abbreviations of
their functions. You can use the ls command to list files, the cpcommand to copy files,
the mv command to move or rename files and the rmcommand to delete files.

For working with directories, use the mkdir command to make directories, the rmdir command to
remove directories (if they are empty) and the rm command to recursively delete directories
containing files.

5.2 ls Command
While technically not a file management command, the ability to list files using lsis critical to file
management. By default, the ls command will list the files in the current directory:

sysadmin@localhost:~$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos test

For arguments, the ls command will accept an arbitrary number of different pathnames to attempt to
list:

sysadmin@localhost:~$ ls . test /usr/local

.:

Desktop Documents Downloads Music Pictures Public Templates Videos test

/usr/local:

bin etc games include lib man sbin share src

test:

adjectives.txt alpha.txt linux.txt people.csv

alpha-first.txt animals.txt longfile.txt profile.txt

alpha-first.txt.original food.txt newhome.txt red.txt

alpha-second.txt hidden.txt numbers.txt

alpha-third.txt letters.txt os.csv

Note the use of the . character. When used where a directory is expected, it represents the current
directory. However, when the . character is used at the beginning of a file or directory name, it makes
the file hidden by default. These hidden files are not normally displayed when using the ls command,
though many can be commonly found in user home directories. Hidden files and directories are
typically used for individual specific data or settings. Using the -aoption will display all files,
including hidden files:

sysadmin@localhost:~$ ls -a

. .bashrc .selected_editor Downloads Public test

.. .cache Desktop Music Templates

.bash_logout .profile Documents Pictures Videos

The -A option to the ls command will display almost all files of a directory. The current directory
file . and the parent directory file .. are omitted.

sysadmin@localhost:~$ ls -A

.bash_logout .profile Documents Pictures Videos

.bashrc .selected_editor Downloads Public test

.cache Desktop Music Templates

To learn the details about a file, such as the type of file, the permissions, ownerships or the
timestamp, perform a long listing. To get a detailed view, use the -l option to the ls command. In the
example below, the /var/logdirectory is being listed because of its variety of output:

sysadmin@localhost:~$ ls -l /var/log/

total 1812

-rw-r--r-- 1 root root 14100 Jul 23 18:45 alternatives.log

drwxr-xr-x 1 root root 38 Jul 23 18:43 apt

-rw-r----- 1 syslog adm 23621 Aug 23 15:17 auth.log

-rw-r--r-- 1 root root 47816 Jul 17 03:36 bootstrap.log

-rw-rw---- 1 root utmp 0 Jul 17 03:34 btmp

-rw-r----- 1 syslog adm 8013 Aug 23 15:17 cron.log

-rw-r----- 1 root adm 85083 Jul 23 18:45 dmesg

-rw-r--r-- 1 root root 245540 Jul 23 18:45 dpkg.log

-rw-r--r-- 1 root root 32064 Jul 23 18:45 faillog

drwxr-xr-x 1 root root 32 Jul 17 03:36 fsck

-rw-r----- 1 syslog adm 416 Aug 22 15:43 kern.log

-rw-rw-r-- 1 root utmp 292584 Aug 20 18:44 lastlog

-rw-r----- 1 syslog adm 0 Aug 22 06:25 syslog

-rw-r----- 1 syslog adm 1087150 Aug 23 15:17 syslog.1

drwxr-xr-x 1 root root 0 Apr 11 21:58 upstart

-rw-rw-r-- 1 root utmp 384 Aug 20 18:44 wtmp

Viewing the above output as fields that are separated by spaces, they indicate:

 File Type

 - rw-r--r-- 1 root root 14100 Jul 23 18:45 alternatives.log

 d rwxr-xr-x 1 root root 38 Jul 23 18:43 apt

The first field actually contains eleven characters, where the first character indicates the
type of file and the next ten specify permissions. The file types are:

 d for directory
 - for regular file
 l for a symbolic link
 s for a socket
 p for a pipe
 b for a block file
 c for a character file

Note that alternatives.log is a regular file -, while the apt is a directory d.

Permissions

d rwxr-xr-x 1 root root 0 Apr 11 21:58 upstart

The permissions are read r, write w, and execute x. Breaking this down a bit:

 rwx : Owner Permissions
 r-x : Group Permissions
 r-x : Everyone Else’s Permissions

 Hard Link Count

-rw-r----- 1 syslog adm 23621 Aug 23 15:17 auth.log

There is only one directory name that links to this file. Hard links will be discussed in detail
later in the course.

 User Owner

-rw-r----- 1 syslog adm 416 Aug 22 15:43 kern.log

User syslog owns this file. Every time a file is created, the ownership is automatically
assigned to the user who created it.

 Group Owner

-rw-rw-r-- 1 root utmp 292584 Aug 20 18:44 lastlog

Although root created this file, any member of the utmp group has read and write access to it
(as indicated by the group permissions).

 File Size

-rw-r----- 1 syslog adm 1087150 Aug 23 15:17 syslog.1

The size of the file in bytes. In the case of a directory, it might actually be a multiple of the
block size used for the file system.

 Timestamp

drwxr-xr-x 1 root root 32 Jul 17 03:36 fsck

This indicates the time that the file's contents were last modified. This time will be listed as
just the date and year if the file was last modified more than six months from the current
date. Otherwise, the month, day, and time is displayed. Using the ls command with the --full-

time option will display timestamps in full detail.

 Filename

-rw-r--r-- 1 root root 47816 Jul 17 03:36 bootstrap.log

The final field contains the name of the file or directory. In the case of symbolic links, the link
name will be shown along with an arrow and the pathname of the file that is linked is shown.

lrwxrwxrwx. 1 root root 22 Nov 6 2012 /etc/grub.conf -> ../boot/grub/grub.conf

Sorting

The output of the ls command is sorted alphabetically by file name. It can sort by other methods as
well:

 -S : Sort by files by size
 -t : Sort by timestamp
 -r : Reverses any type of sort

With both time and size sorts, add the -l option or the --full-time option, to be able to view those
details:

sysadmin@localhost:~$ ls -t --full-time

total 0

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Desktop

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Documents

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Downloads

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Music

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Pictures

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Public

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Templates

drwxr-xr-x 1 sysadmin sysadmin 0 2014-09-18 22:25:18.000000000 +0000 Videos

drwxr-xr-x 1 sysadmin sysadmin 420 2014-09-18 22:25:18.000000000 +0000 test

Recursion

When managing files it is important to understand what the term recursive option means. When the
recursive option is used with file management commands, it means to apply that command to not
only the specified directory, but also to all subdirectories and all of the files within all subdirectories.

Some commands use -r for recursive while others use -R. The -R option is used for recursive with
the ls command because the -r option is used for reversing how the files are sorted:

sysadmin@localhost:~$ ls -lR /var/log

/var/log:

total 804

-rw-r--r-- 1 root root 14100 Sep 18 22:25 alternatives.log

drwxr-xr-x 1 root root 38 Sep 18 22:23 apt

-rw-r----- 1 syslog adm 1343 Sep 29 21:17 auth.log

-rw-r--r-- 1 root root 47816 Sep 17 03:35 bootstrap.log

-rw-rw---- 1 root utmp 0 Sep 17 03:34 btmp

-rw-r----- 1 syslog adm 546 Sep 29 21:17 cron.log

-rw-r----- 1 root adm 85083 Sep 18 22:25 dmesg

-rw-r--r-- 1 root root 252496 Sep 18 22:25 dpkg.log

-rw-r--r-- 1 root root 32064 Sep 18 22:25 faillog

drwxr-xr-x 1 root root 32 Sep 17 03:35 fsck

-rw-r----- 1 syslog adm 108 Sep 29 18:48 kern.log

-rw-rw-r-- 1 root utmp 292584 Sep 29 18:48 lastlog

-rw-r----- 1 syslog adm 58355 Sep 29 21:17 syslog

drwxr-xr-x 1 root root 0 Apr 11 21:58 upstart

-rw-rw-r-- 1 root utmp 384 Sep 29 18:48 wtmp

/var/log/apt:

total 20

-rw-r--r-- 1 root root 13672 Sep 18 22:25 history.log

-rw-r----- 1 root adm 402 Sep 18 22:25 term.log

/var/log/fsck:

total 8

-rw-r----- 1 root adm 31 Sep 17 03:35 checkfs

-rw-r----- 1 root adm 31 Sep 17 03:35 checkroot

/var/log/upstart:

total 0

Use the recursive option carefully because its impact can be huge! With the lscommand, using the -
R option can result in a large amount of output in your terminal. For the other file management
commands, the recursive option can impact a large amount of files and disk space.

The -d option to the ls command also important. When listing a directory, the ls command normally
will show the contents of that directory, but when the -doption is added, then it will display the
directory itself:

sysadmin@localhost:~$ ls -ld /var/log

drwxrwxr-x 1 root syslog 216 Sep 29 18:48 /var/log

5.3 file Command
The file command "looks at" the contents of a file to report what kind of file it is; it does this by
matching the content to known types stored in a "magic" file. Many commands that you will use in
Linux expect that the file name provided as an argument is a text file (rather than some sort of
binary file). As a result, it is a good idea to use the file command before attempting to access a file to
make sure that it does contain text. For example:

sysadmin@localhost:~$ file test/newhome.txt

test/newhome.txt: ASCII text

sysadmin@localhost:~$ file /bin/ls

/bin/ls: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for G
NU/Linux 2.6.24, BuildID[sha1]=64d095bc6589dd4bfbf1c6d62ae985385965461b, stripped

Consider This

If you use a command that is expecting a text file argument, you may get strange results if you
provide a non-text file. Your terminal may become disrupted by attempting to output binary content;
as a result, the terminal may not be able to function properly any more.

The result will be "weird looking" characters being displayed in the terminal. To correct this
situation, typing the command reset will often work. If this does not solve the problem, closing the
terminal and opening a new one will solve the problem.

5.4 touch Command
The touch command performs two functions:

 create an empty file
 update the modification timestamp on an existing file

If the argument provided is an existing file, then the touch command will update the file's timestamp:

sysadmin@localhost:~$ ls -l test/red.txt

-rw-r--r-- 1 sysadmin sysadmin 51 Sep 18 22:25 test/red.txt

sysadmin@localhost:~$ touch test/red.txt

sysadmin@localhost:~$ ls -l test/red.txt

-rw-r--r-- 1 sysadmin sysadmin 51 Sep 29 22:35 test/red.txt

If the argument is a file that does not exist, a new file is created with the current time for the
timestamp. The contents of this new file will be empty:

sysadmin@localhost:~$ touch newfile

sysadmin@localhost:~$ ls

Desktop Downloads Pictures Templates newfile

Documents Music Public Videos test

sysadmin@localhost:~$ ls -l newfile

-rw-rw-r-- 1 sysadmin sysadmin 0 Sep 29 22:39 newfile

Each file has three timestamps:

 The last time the file's contents were modified. This is the timestamp provided by
the ls -l command by default. The touch command modified this timestamp by
default.

 The last time the file was accessed. To modify this timestamp, use the touch -

a command.
 The last time the file attributes, like permissions or ownership, were changed. These

file attributes are also called the file's metadata. To modify this timestamp, use
the touch -c command.

The touch command will normally update the specified time to the current time, but -t option with a
timestamp value to can be used instead.

sysadmin@localhost:~$ touch -t 201412251200 newfile

sysadmin@localhost:~$ ls -l newfile

-rw-rw-r-- 1 sysadmin sysadmin 0 Dec 25 2014 newfile

In order to view all three timestamps that are kept for a file, use the statcommand with the path to
the file as an argument:

sysadmin@localhost:~$ stat test/alpha.txt

 File: 'test/alpha.txt'

 Size: 390 Blocks: 8 IO Block: 4096 regular file

Device: 58h/88d Inode: 13987 Links: 1

Access: (0644/-rw-r--r--) Uid: (1001/sysadmin) Gid: (1001/sysadmin)

Access: 2014-09-23 13:52:03.070012387 +0000

Modify: 2014-09-18 22:25:18.000000000 +0000

Change: 2014-09-23 13:52:03.070012387 +0000

 Birth: -

5.5 cp Command
Creating copies of files can be useful for numerous reasons:

 If a copy of a file is created before changes are made, then it is possible to revert
back to the original.

 It can be used to transfer a file to removable media devices.
 A copy of an existing document can be made, so to take advantage of the existing

layout and content to get started more quickly than from scratch.

Consider This

While permissions will be covered in greater detail later in the course, they can have an impact on
file management commands, such as the cpcommand.

For example, in order to be able to copy a file, you will need to have execute permission to access the
directory where the file is located and the read permission for the file you are trying to copy.

You will also need to have write and execute permission on the directory where you want to put the
copied file. Typically, there are two places where you should always have write and execute
permission on the directory: your home directory (for "permanent" files) and the /tmp directory
(for "temporary" files).

The copy command cp takes at least two arguments: the first argument is the path to the file to be
copied and the second argument is the path to where the copy will be placed. The files to be copied
are sometimes referred to as the source and the place to where the copies are placed in is called the
destination.

Recall that the ~ character that represents your home directory; it is commonly used as a source or
destination.

sysadmin@localhost:~$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos test

For example, to copy the /etc/services file to your home directory, you could use the following
command:

sysadmin@localhost:~$ cp /etc/services ~

The result of executing the previous command would create a copy of the contents of
the /etc/services file in your home directory; the new file in your home directory would also be
named services.

sysadmin@localhost:~$ ls

Desktop Downloads Pictures Templates services

Documents Music Public Videos test

To copy a file and rename the file in one step you can execute a command like:

sysadmin@localhost:~$ cp /etc/services ~/ports

The previous command would copy the contents of the /etc/services file into a new file
named ports in the home directory.

To copy multiple files into a directory, additional file names to copy can be included as long as the
last argument is a destination directory. Although they may only represent one argument, a wildcard
pattern can be expanded to match multiple pathnames. These will be covered in detail in the next

chapter. The following command copies all files in the test directory that start with an n to the home
directory, as a result newhome.txt and numbers.txt are copied.

sysadmin@localhost:~$ cp test/n* ~

sysadmin@localhost:~$ ls

Desktop Downloads Pictures Templates newhome.txt ports test

Documents Music Public Videos numbers.txt services

An issue that frequently comes up when using wildcard patterns with the cpcommand is that
sometimes they match the names of directories as well as regular files. If an attempt is made to copy
a directory, then the cp command will print an error message. Using the -v option makes
the cp command print verbose message, so you can always tell what copies succeed as well as those
that fail. In the following wildcard example we've marked in red the lines which indicate that the
directories were matched, but not copied.

sysadmin@localhost:~$ cp -v /etc/b* ~

'/etc/bash.bashrc' -> '/home/sysadmin/bash.bashrc'

cp: omitting directory '/etc/bash_completion.d'

cp: omitting directory '/etc/bind'

'/etc/bindresvport.blacklist' -> '/home/sysadmin/bindresvport.blacklist'

'/etc/blkid.conf' -> '/home/sysadmin/blkid.conf'

In order to copy a directory, its contents must be copied as well, including all files within the
directories and all of its subdirectories. This can be done by using a recursive option of either -r or -R.

sysadmin@localhost:~$ cp -R -v /etc/perl ~

'/etc/perl' -> '/home/sysadmin/perl'

'/etc/perl/CPAN' -> '/home/sysadmin/perl/CPAN'

'/etc/perl/Net' -> '/home/sysadmin/perl/Net'

'/etc/perl/Net/libnet.cfg' -> '/home/sysadmin/perl/Net/libnet.cfg'

Consider This

The archive option -a copies the contents of the file and also attempts to maintain the original
timestamps and file ownership. For regular users, only original timestamps can be maintained, since
regular users can't create files owned by other users. If the root user uses the -a option, then
the cpcommand will create a new file owned by the original file owner and also use the original file's
timestamps.

The -a option also implies that recursion will be done, so it can also be used to copy a directory.

5.6 mv Command
The mv command is used to move a file from one pathname in the filesystem to another. When you
move a file, it's like creating a copy of the original file with a new pathname and then deleting the
original file.

Consider This

While permissions will be covered in greater detail later in the course, they can have an impact on
file management commands, such as the mvcommand. Moving a file requires write and execute
permissions on both the origin and destination directories.

If you move a file from one directory to another and you don't specify a new name for the file, then it
will retain its original name. For example, the following will move the ~/test/red.txt file into the
home directory ("~" refers to the user's home directory) and the resulting file name will be red.txt:

sysadmin@localhost:~/test$ mv red.txt ~

sysadmin@localhost:~/test$ ls ~

Desktop Downloads Pictures Templates red.txt

Documents Music Public Videos test

Like the cp command, the mv command will allow you to specify multiple files to move, as long as the
final argument provided to the command is a directory. For example:

sysadmin@localhost:~/test$ mv animals.txt food.txt alpha.txt /tmp

sysadmin@localhost:~/test$ ls /tmp

alpha.txt animals.txt food.txt

There is no need for a recursive option with the mv command. When a directory is moved,
everything it contains is automatically moved as well.

Moving a file within the same directory is an effective way to rename it. For example, in the following
command the people.csv file is moved from the current directory to the current directory and given
a new name of founders.csv. In other words people.csv is renamed founders.csv:

sysadmin@localhost:~/test$ mv people.csv founders.csv

5.7 rm Command
The rm command is used to delete files and directories. It is important to keep in mind that deleted
files and directories do not go into a "trash can" as with desktop oriented operating systems. When a
file is deleted with the rm command, it is permanently gone.

Without any options, the rm command is typically used to remove regular files:

sysadmin@localhost:~test$ rm alpha.txt

sysadmin@localhost:~test$ ls alpha.txt

ls: cannot access alpha.txt: No such file or directory

Extra care should be applied when using wildcards to specify which files to remove, as the extent to
which the pattern might match files may be beyond what was anticipated. To avoid accidently
deleting files when using globbing characters, use the -i option. This option makes the rm command
confirm "interactively" every file that you delete:

sysadmin@localhost:~test$ rm -i a*

rm: remove regular file 'adjectives.txt'? y

rm: remove regular file 'alpha-first.txt'? y

rm: remove regular file 'alpha-first.txt.original'? y

rm: remove regular file 'alpha-second.txt'? y

rm: remove regular file 'alpha-third.txt'? y

rm: remove regular file 'animals.txt'? y

Some distributions make the -i option a default option by making an alias for the rm command.

The rm command will ignore directories that it's asked to remove; to delete a directory, use either
the -r or -R options. Just be careful as this will delete all files and all subdirectories:

sysadmin@localhost:~$ rm test

rm: cannot remove 'test': Is a directory

sysadmin@localhost:~$ rm -r test

Consider This

While permissions will be covered in greater detail later in the course, they can have an impact on
file management commands, such as the rmcommand.

To delete a file within a directory, a user must have write and execute permission on a directory.
Regular users typically only have this type of permission in their home directory and its
subdirectories.

The /tmp and /var/tmp directories do have the special permission called sticky bit set on them, so
that files in these directories can only be deleted by the user that owns them (with the exception of
the root user who can delete any file in any directory). So this means if you copy a file to
the /tmpdirectory, then other users of the system will not be able to delete your file.

5.8 mkdir Command
The mkdir command allows you to create a directory. Creating directories is an essential file
management skill, since you will want to maintain some functional organization with your files and
not have them all placed in a single directory.

Typically, you only have a handful of directories in your home directory by default. Exactly what
directories you have will vary due to the distribution of Linux, what software has been installed on
your system and actions that may have been taken by the administrator.

For example, upon successful graphical login on a default installation of CentOS, the following
directories have already been created automatically in the user's home
directory: Desktop, Documents, Downloads, Music, Pictures, Public, Templates and Videos.

The bin directory is a common directory for users to create in their home directory. It is a useful
directory to place scripts that the user has created. In the following example, the user creates
a bin directory within their home directory:

sysadmin@localhost:~$mkdir bin

sysadmin@localhost:~$ ls

Desktop Downloads Pictures Templates bin

Documents Music Public Videos test

The mkdir command can accept a list of space separated pathnames for new directories to create:

sysadmin@localhost:~$mkdir one two three

sysadmin@localhost:~$ ls

Desktop Downloads Pictures Templates bin test two

Documents Music Public Videos one three

Consider This

While permissions will be covered in greater detail later in the course, they can have an impact on
file management commands, such as the mkdircommand.

Creating a directory requires write and execute permissions for the parent of the proposed
directory. For example, to issue the following command, it is necessary to have write and execute
permission in the /etc directory: mkdir /etc/test

Directories are often described in terms of their relationship to each other. If one directory contains
another directory, then it is referred to as the parent directory. The subdirectory is referred to as a
child directory. In the following example /home is the parent directory and /sysadmin is the child
directory:

sysadmin@localhost:~$ pwd

/home/sysadmin

When creating a child directory, its parent directory must first exist. If an administrator wanted to
create directory /blue inside of /home/sysadmin/redwithout its existence, there would be an error:

sysadmin@localhost:~$ mkdir /home/sysadmin/red/blue

mkdir: cannot create directory '/home/sysadmin/red/blue': No such file or directory

By adding the -p option, the mkdir command automatically creates the parent directories for any
child directories about to be created. This is especially useful for making "deep" pathnames:

sysadmin@localhost:~$ mkdir -p /home/sysadmin/red/blue/yellow/green

sysadmin@localhost:~$ ls -R red

red:

blue

red/blue:

yellow

red/blue/yellow:

green

red/blue/yellow/green:

5.9 rmdir Command
The rmdir command is used to remove empty directories.

sysadmin@localhost:~$ rmdir bin

Using the -p option with the rmdir command will remove directory paths, but only if all of the
directories contain other empty directories.

sysadmin@localhost:~$ rmdir red

rmdir: failed to remove 'red': Directory not empty

sysadmin@localhost:~$ rmdir -p red/blue/yellow/green

Otherwise, if a directory contains anything except other directories, you'll need to use the
command rm with a recursive option:

sysadmin@localhost:~$ rmdir test

rmdir: failed to remove 'test': Directory not empty

sysadmin@localhost:~$ rm -r test

Consider This

While permissions will be covered in greater detail later in the course, they can have an impact on
file management commands, such as the rmdir command.

To delete a directory with the rmdir command, you must have write and execute permission on the
parent directory. For example, to issue the following command, you would need to have write and
execute permission in the /etc directory: rmdir /etc/test

Chapter 5: File Manipulation
This chapter will cover the following exam objectives:

103.3: Perform basic file management

Weight: 4

Description: Candidates should be able to use the basic Linux commands to manage files and
directories.

Key Knowledge Areas:

 Copy, move and remove files and directories individually
Section 5.1 | Section 5.5 | Section 5.6 | Section 5.7 | Section 5.8 | Section 5.9

 Copy multiple files and directories recursively
Section 5.5

 Remove files and directories recursively
Section 5.7 | Section 5.9

 Use simple and advanced wildcard specifications in commands
Section 5.5 | Section 5.7

Chapter 5: File Manipulation

cp

Command used to copy files and directories. cp will copy a SOURCE to a DEST, or multiple

SOURCES to a DIRECTORY.
Section 5.5

file

Command used to determine the type of file. file tests each argument in an attempt to

classify it. There are three sets of tests, preformed in this order: filesystem test, magic tests,

and language tests.
Section 5.3

ls

Command that will list information about files. The current directory is listed by default.

| Section 5.2

mkdir

Command used to create directories, if they do not already exist.
Section 5.8

mv

Command that can move files from one location to another, as well as renaming files.
Section 5.6

rm

Command used to remove files or directories. By default the rm command will not remove

directories.
Section 5.7

rmdir

https://content.netdevgroup.com/contents/lpic1-s1/5/5.1
https://content.netdevgroup.com/contents/lpic1-s1/5/5.5
https://content.netdevgroup.com/contents/lpic1-s1/5/5.6
https://content.netdevgroup.com/contents/lpic1-s1/5/5.7
https://content.netdevgroup.com/contents/lpic1-s1/5/5.8
https://content.netdevgroup.com/contents/lpic1-s1/5/5.9
https://content.netdevgroup.com/contents/lpic1-s1/5/5.5
https://content.netdevgroup.com/contents/lpic1-s1/5/5.7
https://content.netdevgroup.com/contents/lpic1-s1/5/5.9
https://content.netdevgroup.com/contents/lpic1-s1/5/5.5
https://content.netdevgroup.com/contents/lpic1-s1/5/5.7
https://content.netdevgroup.com/contents/lpic1-s1/5/#c1
https://content.netdevgroup.com/contents/lpic1-s1/5/5.5
https://content.netdevgroup.com/contents/lpic1-s1/5/5.3
https://content.netdevgroup.com/contents/lpic1-s1/5/5.2
https://content.netdevgroup.com/contents/lpic1-s1/5/5.8
https://content.netdevgroup.com/contents/lpic1-s1/5/5.6
https://content.netdevgroup.com/contents/lpic1-s1/5/5.7

Command that is used to remove empty directories in the filesystem.
Section 5.9

touch

Command used to change the file timestamps. touch will allow a user to update the access

and modification times of each FILE to the current time.
Section 5.4

https://content.netdevgroup.com/contents/lpic1-s1/5/5.9
https://content.netdevgroup.com/contents/lpic1-s1/5/5.4

